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Ed Rosten



What is interest point detection?

• Visually ‘salient’
features.

• Localized in 2D.

• Sparse.

• High ‘information’
content.

• Repeatable between
images.

Useful for:

• 2D tracking, 3D tracking, SLAM, object recognition,
. . .
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Typical processing pipeline
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Contiguous arc ofN or more pixels:

• All much brighter thanp (brighter thanp + t).

or

• All much darker thanp (darker thanp − t).



The FAST detector (version 1)
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FAST—Features from Accelerated Segment Test
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The FAST detector (version 1)
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• Test pixels 1 and 9

• Test pixel 4

• Test pixel 12

• Perform complete segment test



FAST saliency
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• Highestt for which point is a corner.

• Find using bisection overt.
◦ 8 iterations required.
◦ Very small subset of points.



FAST feature detection (version 2)
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FAST feature detection (version 2)

p

• Pixels are either:
◦ Much brighter.
◦ Much darker.
◦ Similar.

• Represent ring as a
ternary vector.

• Classify vectors using
segment test.



Train a classifier

• Decision tree classifiers are very efficient.

• Ask: “What is the state of pixelx?”

• Question splits list in to 3 sublists.

• Query each sublist.

• Recurse until list contains all features or all non
features.

• Choose questions to minimize entropy (ID3).

• Use questions on new feature.

• Works forany N .



Example tree
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Output C++ code

A long string of nested if-else statements:

. . . which continues for 2 more pages.



How FAST? (very)

Detector Set 1 Set 2
Pixel rate (MPix/s) % MPix/s %

FASTn = 9 188 4.90 179 5.15
FASTn = 12 158 5.88 154 5.98
Original FAST (n = 12) 79.0 11.7 82.2 11.2
SUSAN 12.3 74.7 13.6 67.9
Harris 8.05 115 7.90 117
Shi-Tomasi 6.50 142 6.50 142
DoG 4.72 195 5.10 179

• 3.0GHz Pentium 4

• Set 1:992 × 668 pixels.

• set 2:352 × 288 (quarter-PAL) video.

• Percentage budget for PAL, NTSC, DV, 30Hz VGA.



Is it any good?



Repeatability

Is the same real-world 3D point detected from multiple
views?

to match frame 2
Warp frame 1

Detect features in frame 1 Detect features in frame 2

warped feature
compare 

positions to detected
features in frame 2

Repeat for all pairs in a sequence



FAST-ER: Enhanced Repeatability

• Define feature detector as:

A decision tree which detects points with a high
repeatability.

• To evaluate repeatability:
1. Detect features in all frames.
2. Perform non-maximal suppression.
3. Compute repeatability.

• Repeatability is a non-convex function of the tree
configuration.

• Optimize tree using simulated-annealing.

• Use more offsets than FAST.



FAST-ER: Enhanced Repeatability

• Use more offsets than FAST.
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Cost function

1. Higher repeatability is better.

2. Every pixel is a feature⇒ repeatability is 100%.

3. A single detected feature can have 100% repeatability.

Multi-objective optimization needed:

cost = (kR + R−2)(kN + N 2)(kS + S−2)

R = Repeatability.
N = Number of detected features.
S = Size of tree.
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Operations
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Operations
Select a random node. If node is a leaf:
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Operations
flip the class (if possible), . . .
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Operations
grow a random subtree.
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Operations
If node is a non-leaf:
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Operations
randomize the offset, . . .

9

Leaf (non corner) Leaf (corner)

DarkerBrighter

Node (with offset)1

5

2 378



Operations
. . . or . . .
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Operations
replace node with a leaf, . . .
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Operations
delete one subtree
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Operations
and replace it with a copy of another subtree.
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Reducing the burden on the optimizer

Corners should be invariant to:

• Rotation.

• Reflection.

• Intensity inversion.

There are 16 combinations:

• 4 simple rotations (multiples of 90◦).

• 2 reflections.

• 2 intensity inversions.

Run the detector inall combinations.



Iteration scheme

For 100,000 iterations:
1. Randomly modify tree.
2. Output as code.
3. Detect features and perform nonmax suppression.
4. Compute repeatability.
5. Evaluate cost.
6. Keep the modification if:

e
oldcost−cost

temp > rand

7. Reduce the temperature.
Now repeat that 100 times (200 Hours required).



Training data for repeatability

• Change in scale.

• Mostly affine warping.

• Varied texture.



Optimizing FAST-ER for speed

• Tree is applied 16 times at each pixel

• Use repeatability optimized FAST-ER to gather
training data:
1. Detect points in images.
2. Extract ternary vector of surrounding pixels

available to FAST-ER.

• Train single decision tree using ID3.

• Output tree as C code.



Results



Comparisons

• FAST detectors
◦ WhichN is best?
◦ Which of the 200

FAST-ER detectors is best?

• Other detectors
◦ Harris.
◦ Shi-Tomasi
◦ DoG (Difference of Gaussians)
◦ Harris-Laplace
◦ SUSAN

• What parameters should these detectors use?
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Evaluation: Datasets (3D Models)

14 images:

15 images:

8 images:



Evaluation: Homographies

6 images per set:



Results: repeatability curves





Aggregate results

Detector A

FAST-ER 1313.6
FAST-9 1304.57
DoG 1275.59
Shi & Tomasi 1219.08
Harris 1195.2
Harris-Laplace 1153.13
FAST-12 1121.53
SUSAN 1116.79
Random 271.73



Conclusions



What do the results say?

• FAST is suprisingly good.

• FAST-ER is better but slower.









More results



Results: Perspective (box) dataset
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Results: Geometric dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  500  1000  1500  2000

R
ep

ea
ta

bi
lit

y 
%

Corners per frame

Maze dataset

DoG
FAST-12
FAST-9

FAST-ER
Harris

Harris-Laplace
Random

Shi-Tomasi
SUSAN



Results: Bas-relief dataset
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Results: Scale and rotation (bark)
dataset
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Results: Blur (bikes) dataset
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Results: Scale and rotation (boat) dataset
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Results: Perspective (graffiti) dataset
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Results: Lighting dataset
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Results: Blur (trees) dataset
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Results: JPEG compression dataset
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Results: Perspective (wall) dataset
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