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What Is interest point detection?

e Visually ‘salient’
features.

e Localized in 2D.
e Sparse.

e High ‘information’
content.

e Repeatable between
Images.

Useful for:
e 2D tracking, 3D tracking, SLAM, object recognition,



Example: registration
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Typical processing pipeline
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The segment-test detector
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The segment-test detector
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Contiguous arc ofV or more
e All much brighter tham
or

/

=

nixels:
(brighter tharp + t).

e All much darker tharp (darker tharp — ¢).




The FAST detector (version 1)

FAST—Features from Accelerated Segment Test




The FAST detector (version 1)

e Testpixels1land?9
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e Testpixels1l and?9
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e Testpixel 12




The FAST detector (version 1)
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o Testpixelsl1land9

o Test pixel 4

o Testpixel 12

e Perform complete segment test




FAST saliency
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e Highestt for which point is a corner.

e Find using bisection ovet
o 8 iterations required.
o Very small subset of points.



FAST feature detection (version 2)




FAST feature detection (version 2)

e Pixels are either:
o Much brighter.
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FAST feature detection (version 2)

e Pixels are either:
o Much brighter.
o Much darker.
o Similar.




FAST feature detection (version 2)

e Pixels are either: e Representring as a
o Much brighter. ternary vector.
o Much darker. e Classify vectors using
o Similar. segment test.




Traln a classifier

e Decision tree classifiers are very efficient.
e Ask: “What Is the state of pixet?”

e Question splits list in to 3 sublists.

e Query each sublist.

e Recurse until list contains all features or all non
features.

e Choose questions to minimize entropy (ID3).

e Use guestions on new feature.
e Works forany V.



Example tree
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Output C++ code

A long strin

g of nested

If-else statements:

|'|"

... which continues for 2 more pages.




How FAST? (very)

Detector Setl Set 2
Pixel rate (MPix/s) % | MPix/s %

FASTn =9 188 490, 179 5.15
FASTn = 12 158 5.88| 154 5.98
Original FAST (o = 12) 79.0 11.7) 82.2 11.2
SUSAN 12.3 /4.7, 13.6 67.9
Harris 8.05 115 7.90 117
Shi-Tomasi 6.50 142 6.50 142
DoG 4.72 195| 5.10 179

e 3.0GHz Pentium 4
e Set 1:992 x 668 pixels.

o set 2:352 x 288 (quarter-PAL) video.

e Percentage budget for PAL, NTSC, DV, 30Hz VGA.



IS It any good?



Repeatabllity

Is the same real-world 3D point detected from multiple
views?

Detect features in frame 1 Detect features in frame 2

L1744 V.

A

Warp frame 1
to match frame 2

compare
warped feature

positions to detected

features in frame 2

Repeat for all pairs in a sequence



FAST-ER: Enhanced Repeatability

e Define feature detector as:

A decision tree which detects points with a high
repeatability.

e To evaluate repeatabillity:
1. Detect features in all frames.

2. Perform non-maximal suppression.
3. Compute repeatability.

e Repeatability Is a non-convex function of the tree
configuration.

e Optimize tree using simulated-annealing.
e Use more offsets than FAST.



FAST-ER: Enhanced Repeatability

e Use more offsets than FAST.



Cost function

1. Higher repeatability is better.
2. Every pixel Is a feature> repeatability is 100%.
3. A single detected feature can have 100% repeatabilit

Multi-objective optimization needed.:
cost = (kp + R %) (kn + NH) (kg + S
R = Repeatabillity.

N = Number of detected features.
S = Size of tree.
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Cost function

1. Higher repeatability is better.
2. Every pixel Is a feature> repeatability is 100%.
3. A single detected feature can have 100% repeatabilit
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Operations
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Operations
‘Similar’ lead nodes are constrained.

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner
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Operations
Select a random node. If node Is a leaf:

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
flip the class (if possible), ...

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
LOr ...

Brighter Darker

’ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
grow a random subtree.

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
If node Is a non-leatf:

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
randomize the offset, ...

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
LOr ...

Brighter Darker

’ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
replace node with a leaf, ...

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
LOr ...

Brighter Darker

’ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
delete one subtree

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Operations
and replace it with a copy of another subtree.

Brighter Darker

‘ Node (with offset) Leaf (non corner) ‘ Leaf (corner



Reducing the burden on the optimizer

Corners should be invariant to:
e Rotation.
e Reflection.
¢ [ntensity inversion.
There are 16 combinations:
e 4 simple rotations (multiples of 90l
o 2 reflections.
e 2 Intensity inversions.

Run the detector 1/l combinations.



Iteration scheme

For 100,000 iterations:
1. Randomly modify tree.
Output as code.
Detect features and perform nonmax suppression.
Compute repeatability.
Evaluate cost.
Keep the modification if:

o0 W

oldcost—cost

e tm > rand

7. Reduce the temperature.
Now repeat that 100 times (200 Hours required).



Training data for repeatabllity

e Change In scale.
e Mostly affine warping.
e Varied texture.



Optimizing FAST-ER for speed

e Tree is applied 16 times at each pixel

o Use repeatability optimized FAST-ER to gather
training data:

1. Detect points In images.

2. Extract ternary vector of surrounding pixels
available to FAST-ER.

e Train single decision tree using ID3.
e Output tree as C code.



Results



Comparisons

e FAST detectors
o Which N i1s best?
o Which of the 200
FAST-ER detectors is best?
e Other detectors
Haurris.
Shi-Tomasi
DoG (Difference of Gaussians)
Harris-Laplace
SUSAN

O
O
O
O
O
e What parameters should these detectors use?
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Evaluation: Datasets (3D Models)

14 images:




Evaluation: Homographies




Results: repeatability curves




Aggregate results

Detector A
FAST-ER 1313.6
~FAST-9 1304.57
DOG 1275.59
Shi & Tomasi | 1219.08
Harris 1195.2
Harris-Laplace 1153.13
FAST-12 1121.53
SUSAN 1116.79
Random 271.73



Conclusions



What do the results say?

e FAST Is suprisingly good.
e FAST-ER Is better but slower.












More results



Results: Perspective (box) dataset

Box dataset

DoG

FAST-12
FAST-9
FAST-ER
Harris
Harris-Laplace

. . . Random
0) 500 1000 1500 2000 Shi-Tomasi

Corners per frame SUSAN

Repeatability %




Results: Geometric dataset

Maze dataset
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Results: Bas-relief dataset

Bas-relief dataset
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Results: Scale and rotation (bark)
dataset

Bark dataset
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Results: Blur (bikes) dataset

Repeatability %

Bikes dataset
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Results: Scale and rotation (boat) datasel

Boat dataset
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Results: Perspective (graffiti) dataset

Graffiti dataset
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Results: Lighting dataset

Leuven dataset
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Results: Blur (trees) dataset

Trees dataset
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Results: JPEG compression dataset

UBC dataset
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Results: Perspective (wall) dataset

Repeatability %

Wall dataset
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