TooN 2.1
sim2.h
00001 // -*- c++ -*-
00002 
00003 // Copyright (C) 2011 Tom Drummond (twd20@cam.ac.uk),
00004 // Ed Rosten (er258@cam.ac.uk), Gerhard Reitmayr (gr281@cam.ac.uk)
00005 //
00006 // This file is part of the TooN Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 2, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // You should have received a copy of the GNU General Public License along
00018 // with this library; see the file COPYING.  If not, write to the Free
00019 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00020 // USA.
00021 
00022 // As a special exception, you may use this file as part of a free software
00023 // library without restriction.  Specifically, if other files instantiate
00024 // templates or use macros or inline functions from this file, or you compile
00025 // this file and link it with other files to produce an executable, this
00026 // file does not by itself cause the resulting executable to be covered by
00027 // the GNU General Public License.  This exception does not however
00028 // invalidate any other reasons why the executable file might be covered by
00029 // the GNU General Public License.
00030 
00031 /* This code mostly made by copying from sim3.h !! */
00032 
00033 #ifndef TOON_INCLUDE_SIM2_H
00034 #define TOON_INCLUDE_SIM2_H
00035 
00036 #include <TooN/se2.h>
00037 #include <TooN/sim3.h>
00038 
00039 namespace TooN {
00040 
00041 /// Represent a two-dimensional Similarity transformation (a rotation, a uniform scale and a translation). 
00042 /// This can be represented by a \f$2\times 3\f$ matrix operating on a homogeneous co-ordinate, 
00043 /// so that a vector \f$\underline{x}\f$ is transformed to a new location \f$\underline{x}'\f$
00044 /// by
00045 /// \f[\begin{aligned}\underline{x}' &= E\times\underline{x}\\ \begin{bmatrix}x'\\y'\end{bmatrix} &= \begin{pmatrix}r_{11} & r_{12} & t_1\\r_{21} & r_{22} & t_2\end{pmatrix}\begin{bmatrix}x\\y\\1\end{bmatrix}\end{aligned}\f]
00046 /// 
00047 /// This transformation is a member of the Lie group SIM2. These can be parameterised with
00048 /// four numbers (in the space of the Lie Algebra). In this class, the first two parameters are a
00049 /// translation vector while the third is the amount of rotation in the plane as for SO2. The forth is the logarithm of the scale factor.
00050 /// @ingroup gTransforms
00051 template <typename Precision = DefaultPrecision>
00052 class SIM2 {
00053 public:
00054     /// Default constructor. Initialises the the rotation to zero (the identity), the scale factor to one and the translation to zero
00055     SIM2() : my_scale(1) {}
00056     template <class A> SIM2(const SO2<Precision>& R, const Vector<2,Precision,A>& T, const Precision s) : my_se2(R,T), my_scale(s) {}
00057     template <int S, class P, class A> SIM2(const Vector<S, P, A> & v) { *this = exp(v); }
00058 
00059     /// Returns the rotation part of the transformation as a SO2
00060     SO2<Precision> & get_rotation(){return my_se2.get_rotation();}
00061     /// @overload
00062     const SO2<Precision> & get_rotation() const {return my_se2.get_rotation();}
00063     /// Returns the translation part of the transformation as a Vector
00064     Vector<2, Precision> & get_translation() {return my_se2.get_translation();}
00065     /// @overload
00066     const Vector<2, Precision> & get_translation() const {return my_se2.get_translation();}
00067 
00068     /// Returns the scale factor of the transformation
00069     Precision & get_scale() {return my_scale;}
00070     /// @overload
00071     const Precision & get_scale() const {return my_scale;}
00072 
00073     /// Exponentiate a Vector in the Lie Algebra to generate a new SIM2.
00074     /// See the Detailed Description for details of this vector.
00075     /// @param vect The Vector to exponentiate
00076     template <int S, typename P, typename A>
00077     static inline SIM2 exp(const Vector<S,P, A>& vect);
00078     
00079     /// Take the logarithm of the matrix, generating the corresponding vector in the Lie Algebra.
00080     /// See the Detailed Description for details of this vector.
00081     static inline Vector<4, Precision> ln(const SIM2& se2);
00082     /// @overload
00083     Vector<4, Precision> ln() const { return SIM2::ln(*this); }
00084 
00085     /// compute the inverse of the transformation
00086     SIM2 inverse() const {
00087         const SO2<Precision> & rinv = get_rotation().inverse();
00088         const Precision inv_scale = 1/get_scale();
00089         return SIM2(rinv, -(rinv*(inv_scale*get_translation())), inv_scale);
00090     };
00091 
00092     /// Right-multiply by another SIM2 (concatenate the two transformations)
00093     /// @param rhs The multipier
00094     template <typename P>
00095     SIM2<typename Internal::MultiplyType<Precision,P>::type> operator *(const SIM2<P>& rhs) const { 
00096         return SIM2<typename Internal::MultiplyType<Precision,P>::type>(get_rotation()*rhs.get_rotation(), get_translation() + get_rotation() * (get_scale()*rhs.get_translation()), get_scale() * rhs.get_scale());
00097     }
00098 
00099     /// Self right-multiply by another SIM2 (concatenate the two transformations)
00100     /// @param rhs The multipier
00101     inline SIM2& operator *=(const SIM2& rhs) {
00102         *this = *this * rhs; 
00103         return *this; 
00104     }
00105 
00106     /// returns the generators for the Lie group. These are a set of matrices that
00107     /// form a basis for the vector space of the Lie algebra.
00108     /// - 0 is translation in x
00109     /// - 1 is translation in y
00110     /// - 2 is rotation in the plane
00111     /// - 3 is uniform scale
00112     static inline Matrix<3,3, Precision> generator(int i) {
00113         Matrix<3,3,Precision> result(Zeros);
00114         switch(i){
00115         case 0:
00116         case 1:
00117             result(i,2) = 1;
00118             break;
00119         case 2:
00120             result(0,1) = -1;
00121             result(1,0) = 1;
00122             break;
00123         case 3:
00124             result(0,0) = 1;
00125             result(1,1) = 1;
00126             break;
00127         }
00128         return result;
00129     }
00130 
00131     /// transfers a vector in the Lie algebra, from one coord frame to another
00132     /// so that exp(adjoint(vect)) = (*this) * exp(vect) * (this->inverse())
00133     template<typename Accessor>
00134     Vector<4, Precision> adjoint(const Vector<4,Precision, Accessor> & vect) const {
00135         Vector<4, Precision> result;
00136         result[2] = vect[2];
00137         result.template slice<0,2>() = get_rotation() * vect.template slice<0,2>();
00138         result[0] += vect[2] * get_translation()[1];
00139         result[1] -= vect[2] * get_translation()[0];
00140         return result;
00141     }
00142 
00143     template <typename Accessor>
00144     Matrix<4,4,Precision> adjoint(const Matrix<4,4,Precision,Accessor>& M) const {
00145         Matrix<4,4,Precision> result;
00146         for(int i=0; i<4; ++i)
00147             result.T()[i] = adjoint(M.T()[i]);
00148         for(int i=0; i<4; ++i)
00149             result[i] = adjoint(result[i]);
00150         return result;
00151     }
00152 
00153 private:
00154     SE2<Precision> my_se2;
00155     Precision my_scale;
00156 };
00157 
00158 /// Write an SIM2 to a stream 
00159 /// @relates SIM2
00160 template <class Precision>
00161 inline std::ostream& operator<<(std::ostream& os, const SIM2<Precision> & rhs){
00162     std::streamsize fw = os.width();
00163     for(int i=0; i<2; i++){
00164         os.width(fw);
00165         os << rhs.get_rotation().get_matrix()[i] * rhs.get_scale();
00166         os.width(fw);
00167         os << rhs.get_translation()[i] << '\n';
00168     }
00169     return os;
00170 }
00171 
00172 /// Read an SIM2 from a stream 
00173 /// @relates SIM2
00174 template <class Precision>
00175 inline std::istream& operator>>(std::istream& is, SIM2<Precision>& rhs){
00176     for(int i=0; i<2; i++)
00177         is >> rhs.get_rotation().my_matrix[i].ref() >> rhs.get_translation()[i];
00178     rhs.get_scale() = (norm(rhs.get_rotation().my_matrix[0]) + norm(rhs.get_rotation().my_matrix[1]))/2;
00179     rhs.get_rotation().coerce();
00180     return is;
00181 }
00182 
00183 
00184 //////////////////
00185 // operator *   //
00186 // SIM2 * Vector //
00187 //////////////////
00188 
00189 namespace Internal {
00190 template<int S, typename P, typename PV, typename A>
00191 struct SIM2VMult;
00192 }
00193 
00194 template<int S, typename P, typename PV, typename A>
00195 struct Operator<Internal::SIM2VMult<S,P,PV,A> > {
00196     const SIM2<P> & lhs;
00197     const Vector<S,PV,A> & rhs;
00198     
00199     Operator(const SIM2<P> & l, const Vector<S,PV,A> & r ) : lhs(l), rhs(r) {}
00200     
00201     template <int S0, typename P0, typename A0>
00202     void eval(Vector<S0, P0, A0> & res ) const {
00203         SizeMismatch<3,S>::test(3, rhs.size());
00204         res.template slice<0,2>()=lhs.get_rotation()*(lhs.get_scale()*rhs.template slice<0,2>());
00205         res.template slice<0,2>()+=lhs.get_translation() * rhs[2];
00206         res[2] = rhs[2];
00207     }
00208     int size() const { return 3; }
00209 };
00210 
00211 /// Right-multiply with a Vector<3>
00212 /// @relates SIM2
00213 template<int S, typename P, typename PV, typename A>
00214 inline Vector<3, typename Internal::MultiplyType<P,PV>::type> operator*(const SIM2<P> & lhs, const Vector<S,PV,A>& rhs){
00215     return Vector<3, typename Internal::MultiplyType<P,PV>::type>(Operator<Internal::SIM2VMult<S,P,PV,A> >(lhs,rhs));
00216 }
00217 
00218 /// Right-multiply with a Vector<2> (special case, extended to be a homogeneous vector)
00219 /// @relates SIM2
00220 template <typename P, typename PV, typename A>
00221 inline Vector<2, typename Internal::MultiplyType<P,PV>::type> operator*(const SIM2<P>& lhs, const Vector<2,PV,A>& rhs){
00222     return lhs.get_translation() + lhs.get_rotation() * (lhs.get_scale() * rhs);
00223 }
00224 
00225 //////////////////
00226 // operator *   //
00227 // Vector * SIM2 //
00228 //////////////////
00229 
00230 namespace Internal {
00231 template<int S, typename P, typename PV, typename A>
00232 struct VSIM2Mult;
00233 }
00234 
00235 template<int S, typename P, typename PV, typename A>
00236 struct Operator<Internal::VSIM2Mult<S,P,PV,A> > {
00237     const Vector<S,PV,A> & lhs;
00238     const SIM2<P> & rhs;
00239     
00240     Operator(const Vector<S,PV,A> & l, const SIM2<P> & r ) : lhs(l), rhs(r) {}
00241     
00242     template <int S0, typename P0, typename A0>
00243     void eval(Vector<S0, P0, A0> & res ) const {
00244         SizeMismatch<3,S>::test(3, lhs.size());
00245         res.template slice<0,2>() = (lhs.template slice<0,2>()* rhs.get_scale())*rhs.get_rotation();
00246         res[2] = lhs[2];
00247         res[2] += lhs.template slice<0,2>() * rhs.get_translation();
00248     }
00249     int size() const { return 3; }
00250 };
00251 
00252 /// Left-multiply with a Vector<3>
00253 /// @relates SIM2
00254 template<int S, typename P, typename PV, typename A>
00255 inline Vector<3, typename Internal::MultiplyType<PV,P>::type> operator*(const Vector<S,PV,A>& lhs, const SIM2<P> & rhs){
00256     return Vector<3, typename Internal::MultiplyType<PV,P>::type>(Operator<Internal::VSIM2Mult<S, P,PV,A> >(lhs,rhs));
00257 }
00258 
00259 //////////////////
00260 // operator *   //
00261 // SIM2 * Matrix //
00262 //////////////////
00263 
00264 namespace Internal {
00265 template <int R, int C, typename PM, typename A, typename P>
00266 struct SIM2MMult;
00267 }
00268 
00269 template<int R, int Cols, typename PM, typename A, typename P>
00270 struct Operator<Internal::SIM2MMult<R, Cols, PM, A, P> > {
00271     const SIM2<P> & lhs;
00272     const Matrix<R,Cols,PM,A> & rhs;
00273     
00274     Operator(const SIM2<P> & l, const Matrix<R,Cols,PM,A> & r ) : lhs(l), rhs(r) {}
00275     
00276     template <int R0, int C0, typename P0, typename A0>
00277     void eval(Matrix<R0, C0, P0, A0> & res ) const {
00278         SizeMismatch<3,R>::test(3, rhs.num_rows());
00279         for(int i=0; i<rhs.num_cols(); ++i)
00280             res.T()[i] = lhs * rhs.T()[i];
00281     }
00282     int num_cols() const { return rhs.num_cols(); }
00283     int num_rows() const { return 3; }
00284 };
00285 
00286 /// Right-multiply with a Matrix<3>
00287 /// @relates SIM2
00288 template <int R, int Cols, typename PM, typename A, typename P> 
00289 inline Matrix<3,Cols, typename Internal::MultiplyType<P,PM>::type> operator*(const SIM2<P> & lhs, const Matrix<R,Cols,PM, A>& rhs){
00290     return Matrix<3,Cols,typename Internal::MultiplyType<P,PM>::type>(Operator<Internal::SIM2MMult<R, Cols, PM, A, P> >(lhs,rhs));
00291 }
00292 
00293 //////////////////
00294 // operator *   //
00295 // Matrix * SIM2 //
00296 //////////////////
00297 
00298 namespace Internal {
00299 template <int Rows, int C, typename PM, typename A, typename P>
00300 struct MSIM2Mult;
00301 }
00302 
00303 template<int Rows, int C, typename PM, typename A, typename P>
00304 struct Operator<Internal::MSIM2Mult<Rows, C, PM, A, P> > {
00305     const Matrix<Rows,C,PM,A> & lhs;
00306     const SIM2<P> & rhs;
00307     
00308     Operator( const Matrix<Rows,C,PM,A> & l, const SIM2<P> & r ) : lhs(l), rhs(r) {}
00309     
00310     template <int R0, int C0, typename P0, typename A0>
00311     void eval(Matrix<R0, C0, P0, A0> & res ) const {
00312         SizeMismatch<3, C>::test(3, lhs.num_cols());
00313         for(int i=0; i<lhs.num_rows(); ++i)
00314             res[i] = lhs[i] * rhs;
00315     }
00316     int num_cols() const { return 3; }
00317     int num_rows() const { return lhs.num_rows(); }
00318 };
00319 
00320 /// Left-multiply with a Matrix<3>
00321 /// @relates SIM2
00322 template <int Rows, int C, typename PM, typename A, typename P> 
00323 inline Matrix<Rows,3, typename Internal::MultiplyType<PM,P>::type> operator*(const Matrix<Rows,C,PM, A>& lhs, const SIM2<P> & rhs ){
00324     return Matrix<Rows,3,typename Internal::MultiplyType<PM,P>::type>(Operator<Internal::MSIM2Mult<Rows, C, PM, A, P> >(lhs,rhs));
00325 }
00326 
00327 template <typename Precision>
00328 template <int S, typename PV, typename Accessor>
00329 inline SIM2<Precision> SIM2<Precision>::exp(const Vector<S, PV, Accessor>& mu){
00330     SizeMismatch<4,S>::test(4, mu.size());
00331 
00332     static const Precision one_6th = 1.0/6.0;
00333     static const Precision one_20th = 1.0/20.0;
00334   
00335     using std::exp;
00336   
00337     SIM2<Precision> result;
00338   
00339     // rotation
00340     const Precision theta = mu[2];
00341     result.get_rotation() = SO2<Precision>::exp(theta);
00342 
00343     // scale
00344     result.get_scale() = exp(mu[3]);
00345 
00346     // translation
00347     const Vector<3, Precision> coeff = Internal::compute_rodrigues_coefficients_sim3(mu[3], theta);
00348     const Vector<2, Precision> cross = makeVector( -theta * mu[1], theta * mu[0]);
00349     result.get_translation() = coeff[2] * mu.template slice<0,2>() + TooN::operator*(coeff[1], cross);
00350 
00351     return result;
00352 }
00353 
00354 template <typename Precision>
00355 inline Vector<4, Precision> SIM2<Precision>::ln(const SIM2<Precision> & sim2) {
00356     using std::log;
00357 
00358     Vector<4, Precision> result;
00359 
00360     // rotation
00361     const Precision theta = sim2.get_rotation().ln();
00362     result[2] = theta;
00363 
00364     // scale 
00365     result[3] = log(sim2.get_scale());
00366 
00367     // translation
00368     const Vector<3, Precision> coeff = Internal::compute_rodrigues_coefficients_sim3(result[3], theta);
00369     Matrix<2,2, Precision> cross = Zeros; cross(0,1) = -theta; cross(1,0) = theta;
00370     const Matrix<2,2, Precision> W = coeff[2] * Identity + coeff[1] * cross;
00371     result.template slice<0,2>() = gaussian_elimination(W, sim2.get_translation());
00372 
00373     return result;
00374 }
00375 
00376 #if 0
00377 /// Multiply a SO2 with and SE2
00378 /// @relates SE2
00379 /// @relates SO2
00380 template <typename Precision>
00381 inline SE2<Precision> operator*(const SO2<Precision> & lhs, const SE2<Precision>& rhs){
00382     return SE2<Precision>( lhs*rhs.get_rotation(), lhs*rhs.get_translation());
00383 }
00384 #endif
00385 
00386 }
00387 #endif