TooN 2.1
Classes | Public Member Functions | Static Public Member Functions | Static Public Attributes | Friends
SL< N, Precision > Class Template Reference

represents an element from the group SL(n), the NxN matrices M with det(M) = 1. More...

#include <sl.h>

List of all members.

Classes

struct  Invert

Public Member Functions

 SL ()
template<int S, typename P , typename B >
 SL (const Vector< S, P, B > &v)
template<int R, int C, typename P , typename A >
 SL (const Matrix< R, C, P, A > &M)
const Matrix< N, N, Precision > & get_matrix () const
SL inverse () const
template<typename P >
SL< N, typename
Internal::MultiplyType
< Precision, P >::type > 
operator* (const SL< N, P > &rhs) const
template<typename P >
SL operator*= (const SL< N, P > &rhs)
Vector< N *N-1, Precision > ln () const

Static Public Member Functions

template<int S, typename P , typename B >
static SL exp (const Vector< S, P, B > &)
static Matrix< N, N, Precision > generator (int)

Static Public Attributes

static const int size = N
static const int dim = N*N - 1

Friends

std::istream & operator>> (std::istream &, SL &)

Detailed Description

template<int N, typename Precision = DefaultPrecision>
class TooN::SL< N, Precision >

represents an element from the group SL(n), the NxN matrices M with det(M) = 1.

This can be used to conveniently estimate homographies on n-1 dimentional spaces. The implementation uses the matrix exponential function exp for exponentiation from an element in the Lie algebra and LU to compute an inverse.

The Lie algebra are the NxN matrices M with trace(M) = 0. The N*N-1 generators used to represent this vector space are the following:


Member Function Documentation

SL< N, Precision > exp ( const Vector< S, P, B > &  v) [static]

exponentiates a vector in the Lie algebra to compute the corresponding element

References TooN::exp(), Vector< Size, Precision, Base >::size(), and TooN::Zeros.

Referenced by SL< N, Precision >::SL().

Matrix< N, N, Precision > generator ( int  i) [static]

returns one generator of the group.

see SL for a detailed description of the generators used.

  • i number of the generator between 0 and SL::dim -1 inclusive

References TooN::Zeros.