TooN 2.1
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
accumulate_element_functor_matrix< Precision, ComparisonFunctor >
accumulate_element_functor_vector< Precision, ComparisonFunctor >
accumulate_element_horizontal_functor< Precision, ComparisonFunctor >
accumulate_element_vertical_functor< Precision, ComparisonFunctor >
accumulate_functor_matrix< Precision, ComparisonFunctor >
accumulate_functor_vector< Precision, ComparisonFunctor >
accumulate_horizontal_functor< Precision, ComparisonFunctor >
accumulate_vertical_functor< Precision, ComparisonFunctor >
Add
AddType< L, R, F >
AddType< L, R, 0 >
Argument_Needed_For_Dynamic_Parameter
BadSlice< 0 >
CentralCrossDifferenceSecond< Functor, Precision, Size, Base >
CentralDifferenceGradient< Functor, Precision, Size, Base >
CentralDifferenceSecond< Functor, Precision, Size, Base >
CField< L, R >
CheckMOverFill< N, R, C, IsDynamic >
CheckMOverFill< N, R, C, 1 >
CheckOverFill< N, Size >
CheckOverFill< N,-1 >
CheckSlice< Size, Start, Length >
Cholesky< Size, Precision >Decomposes a positive-semidefinite symmetric matrix A (such as a covariance) into L*D*L^T, where L is lower-triangular and D is diagonal
Clean< C >
Clean< C & >
Clean< const C & >
Clean< const C >
Reference::ColMajor
ColMajor
ColSizeHolder< S >
ColStrideHolder< S >
ComputeSymEigen< Size >
ComputeSymEigen< 2 >
ComputeSymEigen< 3 >
ConjugateGradient< Size, Precision >This class provides a nonlinear conjugate-gradient optimizer
DCheck< N >
DCheck<-1 >
Default
DefaultTypes< Precision >
DiagonalMatrix< Size, Precision, Base >A diagonal matrix
DiagSize< Rows, Cols, D >
DiagSize< Rows, Cols, 0 >
DiagStride< Rs, Cs, D >
DiagStride< Rs, Cs, 0 >
Divide
DivideType< L, R, F >
DivideType< L, R, 0 >
DownhillSimplex< N, Precision >This is an implementation of the Downhill Simplex (Nelder & Mead, 1965) algorithm
Field< L, R >Determine if two classes are in the same field
Field< Internal::One, Rhs >
Field< Lhs, Internal::One >
GenericMBase< Rows, Cols, Precision, RowStride, ColStride, Mem >
GenericVBase< Size, Precision, Stride, Mem >
GR_SVD< M, N, Precision, WANT_U, WANT_V >Performs SVD and back substitute to solve equations
ILinear< Precision >A reweighting class representing no reweighting in IRLS
IRLS< Size, Precision, Reweight >Performs iterative reweighted least squares
IsField< C >Is a number a field? i.e., +, -, *, / defined
IsField< const C >Specialized for const types
IsField< fadbad::F< C, N > >
IsField< std::complex< C > >
IsStatic< i >
Lapack_Cholesky< Size, Precision >Decomposes a positive-semidefinite symmetric matrix A (such as a covariance) into L*L^T, where L is lower-triangular
LineSearch< Size, Precision, Func >Turn a multidimensional function in to a 1D function by specifying a point and direction
LU< Size, Precision >Performs LU decomposition and back substitutes to solve equations
Matrix< Rows, Cols, Precision, Layout >A matrix
MatrixAlloc< R, C, Precision, FullyStatic >
MatrixAlloc< R, C, Precision, false >
MatrixFiller< N, R, C, P, B >
MatrixSlice< R, C, Precision >
MatrixStartFill< R, C, P, B >
Reference::RowMajor::MLayout< Rows, Cols, Precision >
Reference::ColMajor::MLayout< Rows, Cols, Precision >
Slice< RowStride, ColStride >::MLayout< Rows, Cols, Precision >
RowMajor::MLayout< Rows, Cols, Precision >
ColMajor::MLayout< Rows, Cols, Precision >
Multiply
MultiplyType< L, R, F >
MultiplyType< L, R, 0 >
CheckSlice< Size, Start, Length >::N< Num >
NegType< C >
NegType< One >
One
Operator< T >
Operator< Internal::AddIdentity< R, C, P, B, Precision > >
Operator< Internal::ApplyScalarM< R, C, P1, B1, P2, Op > >
Operator< Internal::ApplyScalarML< R, C, P1, B1, P2, Op > >
Operator< Internal::ApplyScalarV< Size, P1, B1, P2, Op > >
Operator< Internal::ApplyScalarVL< Size, P1, B1, P2, Op > >
Operator< Internal::Data< N, P > >
Operator< Internal::DiagMatrixOp< Size, Precision, Base > >
Operator< Internal::Identity< Pr > >
Operator< Internal::MatrixMultiply< R1, C1, P1, B1, R2, C2, P2, B2 > >
Operator< Internal::MatrixVectorDiagMultiply< R, C, P1, B1, Size, P2, B2 > >
Operator< Internal::MatrixVectorMultiply< R, C, P1, B1, Size, P2, B2 > >
Operator< Internal::MNegate< R, C, P, A > >
Operator< Internal::MPairwise< Op, R1, C1, P1, B1, R2, C2, P2, B2 > >
Operator< Internal::MSE2Mult< Rows, C, PM, A, P > >
Operator< Internal::MSE3Mult< Rows, C, PM, A, P > >
Operator< Internal::MSIM2Mult< Rows, C, PM, A, P > >
Operator< Internal::MSIM3Mult< Rows, C, PM, A, P > >
Operator< Internal::RCScalars< P > >
Operator< Internal::RCZero >
Operator< Internal::Scalars< P > >
Operator< Internal::ScalarsMatrix< R, C, P, B, Precision > >
Operator< Internal::ScalarsVector< S, P, B, Precision > >
Operator< Internal::SE2MMult< R, Cols, PM, A, P > >
Operator< Internal::SE2VMult< S, P, PV, A > >
Operator< Internal::SE3MMult< R, Cols, PM, A, P > >
Operator< Internal::SE3VMult< S, PV, A, P > >
Operator< Internal::SIM2MMult< R, Cols, PM, A, P > >
Operator< Internal::SIM2VMult< S, P, PV, A > >
Operator< Internal::SIM3MMult< R, Cols, PM, A, P > >
Operator< Internal::SIM3VMult< S, PV, A, P > >
Operator< Internal::SizedIdentity< Precision > >
Operator< Internal::SizedScalars< P > >
Operator< Internal::SizedZero >
Operator< Internal::VectorMatrixDiagMultiply< Size, P1, B1, R, C, P2, B2 > >
Operator< Internal::VectorMatrixMultiply< Size, P1, B1, R, C, P2, B2 > >
Operator< Internal::VNegate< S, P, A > >
Operator< Internal::VPairwise< Op, S1, P1, B1, S2, P2, B2 > >
Operator< Internal::VSE2Mult< S, P, PV, A > >
Operator< Internal::VSE3Mult< S, PV, A, P > >
Operator< Internal::VSIM2Mult< S, P, PV, A > >
Operator< Internal::VSIM3Mult< S, PV, A, P > >
Operator< Internal::Zero >
overfill< 0 >
PointerToPlanarComplex< std::complex< Precision > >
QR< Rows, Cols, Precision >Performs QR decomposition
QR_Lapack< Rows, Cols, Precision >Performs QR decomposition
Reference
ReferencePlanarComplex
Divide::Return< P1, P2 >
Add::Return< P1, P2 >
Subtract::Return< P1, P2 >
Multiply::Return< P1, P2 >
RobustI< Precision >Robust reweighting (type I) for IRLS
RobustII< Precision >Robust reweighting (type II) for IRLS
RobustIII< Precision >A reweighting class where the objective function tends to a fixed value, rather than infinity
Reference::RowMajor
RowMajor
RowSizeHolder< S >
RowStrideHolder< S >
SE2< Precision >Represent a two-dimensional Euclidean transformation (a rotation and a translation)
SE3< Precision >Represent a three-dimensional Euclidean transformation (a rotation and a translation)
SFINAE_dummy< S >
SIM2< Precision >Represent a two-dimensional Similarity transformation (a rotation, a uniform scale and a translation)
SIM3< Precision >Represent a three-dimensional similarity transformation (a rotation, a scale factor and a translation)
SimpleSizer< i, j >
SimpleSizer< Dynamic, Dynamic >
SimpleSizer< Dynamic, i >
SimpleSizer< i, Dynamic >
Size3< i, j, k >
SizeHolder< s >
SizeHolder<-1 >
SizeMismatch< Size1, Size2 >
SizeMismatch_< Dynamic, Dynamic >
SizeMismatch_< Dynamic, Size >
SizeMismatch_< Size, Dynamic >
SizeMismatch_< Size, Size >
Sizer< i, j >
Sizer< i, i >
SL< N, Precision >Element from the group SL(n), the NxN matrices M with det(M) = 1
Slice< RowStride, ColStride >
SliceVBase< Stride, Ptr, CPtr, Ref, CRef >
SliceVBase< Stride, Default, Default, Default, Default >
Slicing
SO2< Precision >Class to represent a two-dimensional rotation matrix
SO3< Precision >Class to represent a three-dimensional rotation matrix
SQSVD< Size, Precision >Version of SVD forced to be square princiapally here to allow use in WLS
Square< R, C >
Square< Dynamic, C >
Square< Dynamic, Dynamic >
Square< R, Dynamic >
Square< R, R >
StackOrHeap
StackOrHeap< Size, double, 0 >
StackOrHeap< Size, Precision, 0 >
StackOrHeap< Size, Precision, 1 >
StaticSizedAllocator< Size, Precision >
StrideHolder< s >
StrideHolder<-1 >
Subtract
SubtractType< L, R, F >
SubtractType< L, R, 0 >
SVD< Rows, Cols, Precision >Performs SVD and back substitute to solve equations
Swap< V1, V2, has_swap >
Swap< V, V, true >
SymEigen< Size, Precision >Performs eigen decomposition of a matrix
template MLayout
template MLayout
template MLayout
template MLayout
template MLayout
template MLayout
template VLayout
template VLayout
template VLayout
template VLayout
template VLayout
VBase
Vector< Size, Precision, Base >A vector
VectorAlloc< Size, Precision >
VectorAlloc< Dynamic, Precision >
VectorAlloc< Resizable, Precision >
VectorFiller< N, Size, P, B >
VectorSlice< S, Precision, PtrType, ConstPtrType, RefType, ConstRefType >
VectorSlice< Dynamic, Precision, PtrType, ConstPtrType, RefType, ConstRefType >
VectorStartFill< Size, P, B >
SliceVBase< Stride, Default, Default, Default, Default >::VLayout< Size, Precision >
VBase::VLayout< Size, Precision >
SliceVBase< Stride, Ptr, CPtr, Ref, CRef >::VLayout< Size, Precision >
Reference::VLayout< Size, Precision >
ReferencePlanarComplex::VLayout< Size, std::complex< Precision > >
WLS< Size, Precision, Decomposition >Performs Gauss-Newton weighted least squares computation