TooN 2.1
Classes | Public Member Functions | Static Public Member Functions | Friends | Related Functions
SO3< Precision > Class Template Reference

Class to represent a three-dimensional rotation matrix. More...

#include <so3.h>

List of all members.

Classes

struct  Invert

Public Member Functions

 SO3 ()
template<int S, typename P , typename A >
 SO3 (const Vector< S, P, A > &v)
template<int R, int C, typename P , typename A >
 SO3 (const Matrix< R, C, P, A > &rhs)
template<int S1, int S2, typename P1 , typename P2 , typename A1 , typename A2 >
 SO3 (const Vector< S1, P1, A1 > &a, const Vector< S2, P2, A2 > &b)
template<int R, int C, typename P , typename A >
SO3operator= (const Matrix< R, C, P, A > &rhs)
void coerce ()
Vector< 3, Precision > ln () const
SO3 inverse () const
template<typename P >
SO3operator*= (const SO3< P > &rhs)
template<typename P >
SO3< typename
Internal::MultiplyType
< Precision, P >::type > 
operator* (const SO3< P > &rhs) const
const Matrix< 3, 3, Precision > & get_matrix () const
template<int S, typename A >
Vector< 3, Precision > adjoint (const Vector< S, Precision, A > &vect) const
template<typename PA , typename PB >
 SO3 (const SO3< PA > &a, const SO3< PB > &b)
template<int S, typename VP , typename VA >
SO3< Precision > exp (const Vector< S, VP, VA > &w)

Static Public Member Functions

template<int S, typename VP , typename A >
static SO3 exp (const Vector< S, VP, A > &vect)
static Matrix< 3, 3, Precision > generator (int i)
template<typename Base >
static Vector< 3, Precision > generator_field (int i, const Vector< 3, Precision, Base > &pos)

Friends

std::istream & operator>> (std::istream &is, SO3< Precision > &rhs)
std::istream & operator>> (std::istream &is, SE3< Precision > &rhs)
std::istream & operator>> (std::istream &is, SIM3< Precision > &rhs)

Related Functions

(Note that these are not member functions.)

template<typename Precision >
std::ostream & operator<< (std::ostream &os, const SO3< Precision > &rhs)
template<typename Precision , int S, typename VP , typename VA , typename MA >
void rodrigues_so3_exp (const Vector< S, VP, VA > &w, const Precision A, const Precision B, Matrix< 3, 3, Precision, MA > &R)
template<int S, typename P , typename PV , typename A >
Vector< 3, typename
Internal::MultiplyType< P, PV >
::type > 
operator* (const SO3< P > &lhs, const Vector< S, PV, A > &rhs)
template<int S, typename P , typename PV , typename A >
Vector< 3, typename
Internal::MultiplyType< PV, P >
::type > 
operator* (const Vector< S, PV, A > &lhs, const SO3< P > &rhs)
template<int R, int C, typename P , typename PM , typename A >
Matrix< 3, C, typename
Internal::MultiplyType< P, PM >
::type > 
operator* (const SO3< P > &lhs, const Matrix< R, C, PM, A > &rhs)
template<int R, int C, typename P , typename PM , typename A >
Matrix< R, 3, typename
Internal::MultiplyType< PM, P >
::type > 
operator* (const Matrix< R, C, PM, A > &lhs, const SO3< P > &rhs)

Detailed Description

template<typename Precision = DefaultPrecision>
class TooN::SO3< Precision >

Class to represent a three-dimensional rotation matrix.

Three-dimensional rotation matrices are members of the Special Orthogonal Lie group SO3. This group can be parameterised three numbers (a vector in the space of the Lie Algebra). In this class, the three parameters are the finite rotation vector, i.e. a three-dimensional vector whose direction is the axis of rotation and whose length is the angle of rotation in radians. Exponentiating this vector gives the matrix, and the logarithm of the matrix gives this vector.


Constructor & Destructor Documentation

SO3 ( const Vector< S1, P1, A1 > &  a,
const Vector< S2, P2, A2 > &  b 
)

creates an SO3 as a rotation that takes Vector a into the direction of Vector b with the rotation axis along a ^ b.

If |a ^ b| == 0, it creates the identity rotation. An assertion will fail if Vector a and Vector b are in exactly opposite directions.

Parameters:
asource Vector
btarget Vector

Member Function Documentation

SO3& operator= ( const Matrix< R, C, P, A > &  rhs)

Assignment operator from a general matrix.

This also calls coerce() to make sure that the matrix is a valid rotation matrix.

static SO3 exp ( const Vector< S, VP, A > &  vect) [static]

Exponentiate a vector in the Lie algebra to generate a new SO3.

See the Detailed Description for details of this vector.

Referenced by SO3< P >::SO3().

Vector< 3, Precision > ln ( ) const

Take the logarithm of the matrix, generating the corresponding vector in the Lie Algebra.

See the Detailed Description for details of this vector.

References TooN::sqrt(), and TooN::unit().

static Matrix<3,3, Precision> generator ( int  i) [static]

Returns the i-th generator.

The generators of a Lie group are the basis for the space of the Lie algebra. For SO3, the generators are three $3\times3$ matrices representing the three possible (linearised) rotations.

SO3<Precision> exp ( const Vector< S, VP, VA > &  w)

Perform the exponential of the matrix $ \sum_i w_iG_i$.

Parameters:
wWeightings of the generator matrices.

References Vector< Size, Precision, Base >::size(), and TooN::sqrt().


Friends And Related Function Documentation

std::istream & operator>> ( std::istream &  is,
SO3< Precision > &  rhs 
) [friend]

Read from SO3 to a stream.

std::istream & operator>> ( std::istream &  is,
SE3< Precision > &  rhs 
) [friend]

Reads an SE3 from a stream.

std::istream & operator>> ( std::istream &  is,
SIM3< Precision > &  rhs 
) [friend]

Reads an SIM3 from a stream.

std::ostream & operator<< ( std::ostream &  os,
const SO3< Precision > &  rhs 
) [related]

Write an SO3 to a stream.

void rodrigues_so3_exp ( const Vector< S, VP, VA > &  w,
const Precision  A,
const Precision  B,
Matrix< 3, 3, Precision, MA > &  R 
) [related]

Compute a rotation exponential using the Rodrigues Formula.

The rotation axis is given by $\vec{w}$, and the rotation angle must be computed using $ \theta = |\vec{w}|$. This is provided as a separate function primarily to allow fast and rough matrix exponentials using fast and rough approximations to A and B.

Parameters:
wVector about which to rotate.
A$\frac{\sin \theta}{\theta}$
B$\frac{1 - \cos \theta}{\theta^2}$
RMatrix to hold the return value.

References Vector< Size, Precision, Base >::size().

Vector< 3, typename Internal::MultiplyType< P, PV >::type > operator* ( const SO3< P > &  lhs,
const Vector< S, PV, A > &  rhs 
) [related]

Right-multiply by a Vector.

References SO3< Precision >::get_matrix().

Vector< 3, typename Internal::MultiplyType< PV, P >::type > operator* ( const Vector< S, PV, A > &  lhs,
const SO3< P > &  rhs 
) [related]

Left-multiply by a Vector.

References SO3< Precision >::get_matrix().

Matrix< 3, C, typename Internal::MultiplyType< P, PM >::type > operator* ( const SO3< P > &  lhs,
const Matrix< R, C, PM, A > &  rhs 
) [related]

Right-multiply by a matrix.

References SO3< Precision >::get_matrix().

Matrix< R, 3, typename Internal::MultiplyType< PM, P >::type > operator* ( const Matrix< R, C, PM, A > &  lhs,
const SO3< P > &  rhs 
) [related]

Left-multiply by a matrix.

References SO3< Precision >::get_matrix().